1. Bagging: apply classifier C on random samples of the data followed by maijority vote. If C
is linear then bagging also gives a linear classifier. For bagging to be effective we want a
non-linear classifier like decision trees. Thus random forests are effective because they
use decisions trees as the base classifier. For example if we have three classifiers then
the output of bagging is sign(’5*C1 + ¥5*C2 + /5*C3)

2. Boosting: linearly combine different classifiers. Boosting reduces to bagging if we give
same weight to all classifiers. In boosting we assign different weights. For example for
three classifier the output would be sign(a*C1 + b*C2 + c*C3)

3. Stacking is another method to combine classifiers. It is highly effective but theoretically
not understood. In stacking we make new features from the base classifiers and then
apply a classifier to the new feature representation. This is a two-stage method.
Suppose we have three classifiers C1, C2, and C3. We predict the train and test
datasets with C1, C2, and C3. In this case we will have three outputs for each datapoint.
These outputs can either be the sign function or the probability. So we now have a new
representation of the data, in this case a three dimensional representation. We then
apply a final classifier to the new representation of the data.

Stacking vs neural networks:

Neural network Stacking

Optimization is on one global objective We optimize each node independently of
others. The final classifier is also applied
independently of the first level classifiers.

Hidden nodes are the same classifier, usually | There are no hidden nodes. Each node here
least squares for purposes of solving it is a classifier and different from the classifier
in the other nodes.

We train the network on all training data In the first level we train on part of the training
data (say half) and then predict on the other
half and the full test. We then switch training
to the other half and repeat. Thus if we have
three classifiers this would give us 6 new

features.
Hard to implement, can overfit, and lots of Very easy to implement, has excellent
parameters empirical question. (Research question: can it

outperform neural networks?)




